

Predict Plants Outage or Machine Failure

Client Profile

During a workshop at client site a use case came up on top of the list. How to reduce or even predict. Manufacturing plants outage hours or days in advance.

The Business Challenge

In plants there is a need of Predictive maintenance (PdM) that monitors the performance and condition of equipment while it is in use to reduce the risk of failure. Predictive maintenance, also known as condition-based maintenance, has been used in the industrial sector since the 1990s.

Canspirit Predictive Analytics Approach

Canspirit Team uses Google Cloud to implement the solution

- This model comprises of another Manufacturing unit's dataset, sources are telemetry, machine failure, error logs, maintenance, and machines configuration(age).
- Canspirit team will built a predictive model using this dataset, leveraging statistical techniques to identify the influence of certain errors, machine unique ID and machine components which are predicted to fail.

Telemetry OEM Automated Data Capture Software(s) e.g. ROCKWELL,REDZO Predictions on – Relative Influence on Machine outage Maintenance Component(s) causing failure Voltage, model and age leading failure Certain errors in gi en plant a NE, TRIHEDRAL, W Machine ONDERWARE Failures e.t.c Error Logs Machine Configuration superset 피

Architecture of Predict Plants Outage or Machine Failure

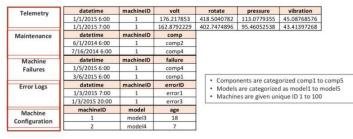
Nature of Data

Data Source

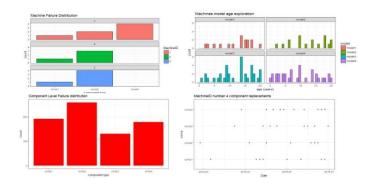
Predictive Model hosting on Cloud Computing

A sample data of Predict Plants Outage or Machine Failure to decide whether the Model is effective:

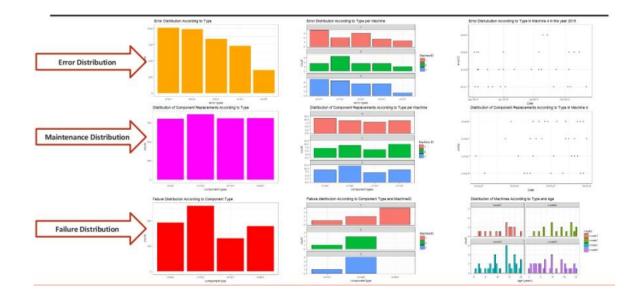
Machine Learning Model



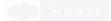
A Dataset View:

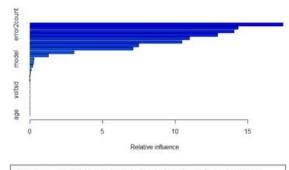


Exploration on Dataset



Insights to Predictions :





<u>Summary</u> – Variable error2count is predicted to influence most to cause a certain machine to fail. On the other hand vibrationsd_24hrs and pressuremean are predicted not to cause any failure in next 24 hours (as per the dataset used).

	variable	Relative Influence
error2count	error2count	17.55478
error5count	error5count	14.92207
voltmean_24hrs	voltmean_24hrs	14.2271
vibrationmean_24hrs	vibrationmean 24hrs	12.93978
error3count	error3count	11.06276
pressuremean_24hrs	pressuremean_24hrs	9.595632
rotatemean_24hrs	rotatemean_24hrs	7.292141
error1count	error1count	6.60328
error4count	error4count	3.716549
sincelastcomp1	sincelastcomp1	1.364124
model	model	0.3032902
sincelastcomp3	sincelastcomp3	0.2124723
vibrationmean	vibrationmean	0.05653781
rotatemean	rotatemean	0.03527521
pressuresd_24hrs	pressuresd_24hrs	0.02871147
sincelastcomp4	sincelastcomp4	0.02720787
age	age	0.02229394
voltmean	voltmean	0.01600519
pressuresd	pressuresd	0.0131631
vibrationsd	vibrationsd	0.006823297
pressuremean	pressuremean	p
voltsd	voltad	þ
rotatesd	rotatesd	þ
voltsd_24hrs	voltsd_24hrs	p
rotatesd 24hrs	rotatesd 24hrs	þ
vibrationsd 24hrs	vibrationsd 24hrs	p
sincelastcomp2	sincelastcomp2	D

Technologies and Tools

- Python
- ROCKWELL
- REDZONE
- TRIHEDRAL
- WONDERWARE
- Google Cloud

Challenges and Solutions

- The machines and Components were categorized manually:
 - Components are categorized comp1 to comp5
 - Models are categorized as model1 to model5
 - Machines are given unique ID 1 to 100
- Data set and training of model was done using the company's requirement and Different OEM Automated Data Capture Software's were used.

Business Benefits

- The Company was able to predict manufacturing plants outage hours or days in advance.
- Prevention of Machine Failure reduced up to 40%.

Bottom Line

Canspirit leveraged its Data Science, machine learning and Cloud Computing skills to Predict Manufacturing Analytics to Predict Outage and Machine Failure.

For a discussion on how we can help you grow your business, email us now at: info@canspirit.ai